Formation of bone-like apatite on poly(L-lactic acid) fibers by a biomimetic process

Abstract
Bone-like apatite coating on poly(L-lactic acid) (PLLA) fibers was formed by immersing the fibers in a modified simulated body fluid (SBF) at 37°C and pH 7.3 after hydrolysis of the fibers in water. The ion concentrations in SBF were nearly 1.5 times of those in the human blood plasma. The apatite was characterized by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thin-film X-ray diffraction, and Fourier transform infrared spectroscopy. After 15 days of incubation in SBF, an apatite layer with about 5–6 μm thickness was formed on the surface of the fibers. This apatite had a Ca/P ratio similar to that of natural bone. The mass of apatite coated PLLA fibers increased with extending the incubation time. After 20 days incubation, the fibers increased their mass by 25.8 ± 2.1%. The apatite coating had no significant effect on the tensile properties of PLLA fibers. In this article, the bone-like apatite coating on three-dimensional PLLA braids was also studied. The motivation for this apatite coating was that it might demonstrate enhanced osteoconductivity in the future studies when they serve as biodegradable scaffolds in tissue engineering. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 140–150, 2001

This publication has 38 references indexed in Scilit: