Methyl-beta-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts

Abstract
An acute increase in the Vmax for glucose uptake occurs in many mammalian cell types after exposure to osmotic or metabolic stress. In the rat epithelial Clone 9 cell line, the glucose transporter isoform GLUT1 is responsible for this enhanced uptake. Although stimulation of transport in these cells is known to result from the unmasking of 'cryptic' exofacial permeant-binding sites in GLUT1 molecules resident in the plasma membrane, the mechanism of such unmasking remains unclear. One possibility involves changes in the lipid environment of the transporter: reconstitution experiments have shown that transport activity in vitro is acutely sensitive to the phospholipid and cholesterol composition of the membrane. In the current study we found that treatment of Clone 9 cells with methyl-beta-cyclodextrin, which removed >80% of the cell cholesterol, led to a 3.5-fold increase in the Vmax for 3-O-methyl-D-glucose transport while having little effect on the Km. In contrast to the metabolic stress induced by inhibition of oxidative phosphorylation, cholesterol depletion led neither to depletion of cellular ATP nor stimulation of AMP-activated protein kinase. Similarly, it did not result in stimulation of members of the stress- and mitogen-activated protein kinase families. In unstressed, cholesterol-replete cells, a substantial proportion of GLUT1 in detergent lysates co-fractionated with the lipid-raft proteins caveolin and stomatin on density-gradient centrifugation. Immunocytochemistry also revealed the presence of GLUT1-enriched domains, some of which co-localized with stomatin, in the plasma membrane. Both techniques revealed that the abundance of such putative GLUT1-containing domains was decreased not only by cholesterol depletion but also in cells subjected to metabolic stress. Taken together, these data suggest that a change in the lipid environment of GLUT1, possibly associated with its re-distribution between different microdomains of the plasma membrane, could play a role in its activation in response to stress.

This publication has 44 references indexed in Scilit: