Run-up of solitary waves

Abstract
A numerical model based on a Lagrangian description has been developed for studying run-up of long water waves governed by a set of Boussinesq equations. The performance of the numerical scheme has been tested by comparing with analytical solutions and experimental data. Simulations of the run-up of solitary waves on relatively steep planes (inclination angle > 20°) show surface displacements and run-up heights in good agreement with experiments. For waves with relatively large amplitude the simulations reveal the development of a breaking bore during the backwash. Results for run-up heights in converging and diverging channels are also presented.

This publication has 8 references indexed in Scilit: