Tribological Behavior of Amorphous Carbon Nitride Overcoats for Magnetic Thin-Film Rigid Disks

Abstract
Amorphous carbon nitride coatings of thickness of 5 and 30 nm were deposited onto 65 and 95 mm magnetic thin-film rigid disks surfaces using single-cathode and dual-cathode magnetron sputtering systems containing nitrogen-argon plasmas. Under optimum deposition conditions, amorphous carbon nitride coatings can be synthesized on ultrasmooth thin-film disks with no significant pinholes at thickness down to 5 nm, with hardness 22–28 GPa (compared to 7–12 GPa for amorphous carbon), and r.m.s. roughness as low as 0.25 nm. These amorphous carbon nitride coatings were shown to have better contact-start-stop performance and three-to-four times better pin-on-disk contact durability compared with amorphous carbon overcoats under identical testing conditions. Amorphous carbon nitride appears to be a promising candidate overcoat material for replacing amorphous carbon in the next-generation magnetic thin-film rigid disk systems.