Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane

Abstract
The permeability of human red cell membrane to 90 different molecules has been measured. These solutes cover a wide spectrum of nonelectrolytes with varying chemical structure, chain length, lipid solubility, chemical reactive group, ability to form hydrogen bonds, and other properties. In general, the present study suggests that the permeability of red cell membrane to a large solute is determined by lipid solubility, its molecular size, and its hydrogen-bonding ability. The permeability coefficient increases with increasing lipid solubility and decreasing ability to form hydrogen bonds, whereas it decreases with increasing molecular size. In the case of small solutes, the predominant diffusion factor is steric hindrance augmented by lipid solubility. It is also found that replacement of a hydroxyl group by a carbonyl group or an ether linkage tends to increase permeability. On the other hand, replacement of a hydroxyl group by an amide group tends to decrease the permeability coefficient.

This publication has 9 references indexed in Scilit: