Abstract
Appropriate surface modification has significantly improved the blood compatibility of polymeric biomaterials. This article reviews methods of surface modification with water-soluble polymers, such as polyethylene oxide (PEO), albumin, and heparin. PEO is a synthetic, neutral, watersoluble polymer, while albumin and heparin are a natural globular protein and an anionic polysaccharide, respectively. When grafted onto the surface, all three macromolecules share a common feature to reduce thrombogenicity of biomaterials. The reduced thrombogenicity is due to the unique hydrodynamic properties of the grafted macromolecules. In aqueous medium, surface-bound water-soluble polymers are expected to be highly flexible and extend into the bulk solution. Biomaterials grafted with either PEO, albumin, or heparin are able to resist plasma porotein adsorption and platelet adhesion predominantly by a steric repulsion mechanism.