Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion

Abstract
Porphyromonas gingivalis, an oral pathogen, can internalize within primary gingival epithelial cells (GECs) through an invasion mechanism mediated by interactions between P. gingivalis fimbriae and integrins on the surface of the GECs. Fimbriae–integrin-based signalling events were studied by fluorescence microscopy, and the subcellular localization of integrin-associated signalling molecules paxillin and focal adhesion kinase (FAK), and the architecture of the actin and microtubule cytoskeleton were examined. GECs infected with P. gingivalis for 30 min demonstrated significant redistribution of paxillin and FAK from the cytosol to cell peripheries and assembly into focal adhesion complexes. In contrast, a fimbriae-deficient mutant of P. gingivalis did not contribute substantially to activation of paxillin or FAK. After 24 h, the majority of paxillin and FAK had returned to the cytoplasm with significant co-localization with P. gingivalis in the perinuclear region. Wild-type P. gingivalis induced nucleation of actin filaments forming microspike-like protrusions and long stable microfilaments distributed throughout the cells. Fimbriae mutants promoted a rich cortical actin meshwork accompanied by membrane ruffling dispersed along the cell membrane. Remarkable disassembly and nucleation of the actin and microtubule filamentous network was observed following 24 h infection with either wild-type or fimbriae-deficient mutants of P. gingivalis. The results show that fimbriated P. gingivalis cells induce formation of integrin-associated focal adhesions with subsequent remodelling of the actin and tubulin cytoskeleton.