Modeling of Tool Forces for Worn Tools: Flank Wear Effects

Abstract
A general procedure for the separation of ploughing forces from shearing forces on the shear plane is outlined. The first part of the paper deals with the experimental separation of these forces using the predictive machining theory developed by Oxley. The forces are decomposed by first separating the shear forces from the total forces and then employing an iterative procedure to calculate the normal forces on the shear plane. All analysis is conducted for three dimensional cutting. The second part of the paper develops a procedure to model the ploughing forces by accounting for the change in geometry with flank wear. The procedure uses the indentation models along with values of tool and workpiece material constants to determine the indentation force. Models for the indentation depth are developed from a few designed experiments and the predictions by the established models are then compared with experimental results obtained for different cutting conditions. The theoretical predictions of the ploughing forces agree closely with results of the experiments. Additional analysis using ceramic tools also show reasonably good agreement between predictions and experimental measurements.