Abstract
The present paper generalises some results for spectrally negative Lévy processes to the setting of Markov additive processes (MAPs). A prominent role is assumed by the first passage times, which will be determined in terms of their Laplace transforms. These have the form of a phase-type distribution, with a rate matrix that can be regarded as an inverse function of the cumulant matrix. A numerically stable iteration to compute this matrix is given. The theory is first developed for MAPs without positive jumps and then extended to include positive jumps having phase-type distributions. Numerical and analytical examples show agreement with existing results in special cases.

This publication has 16 references indexed in Scilit: