Abstract
Urinary acidification by the turtle bladder is due to a H+-ATPase that is located in the luminal membrane. The rate of H+ transport is stimulated by an increase in the ambient CO2. Using the fluorescent dye acridine orange, it was shown that the mitochondria-rich cell of this epithelium contains vesicles whose internal pH is acidic. pH of these vesicles measured using endocytosed fluorescein isothiocyanate-labeled dextran was near 5.0. The pH increased after treatment with protonophores or metabolic inhibitors, suggesting that it was due to a H+ pump rather than to a Donnan effect. In bladders preloaded with fluorescent dextran, CO2 stimulated exocytosis and H+ transport measured simultaneously in the same bladder. The increase in the H+ current correlated well with the extent of exocytosis, and both were inhibited by pretreatment with colchicine. Apparently, the turtle bladder contains an intracellular reserve of vesicles containing H+ pumps and CO2 stimulates rapid fusion of these vesicles with the luminal membrane with consequent insertion of H+ pumps, thereby stimulating H+ secretion across the whole epithelium.