Redesign of Structural Vibration Modes by Finite-Element Inverse Perturbation

Abstract
A previously developed technique for redesigning the vibrational properties of structures, by inverting the first-order perturbation analysis of the equations of motion, has been applied to a NASTRAN finite element analysis for plates and shells. The program finds the minimal changes to the thicknesses of the plate elements necessary to effect a given set of changes in the modal frequencies and shapes. Results have been obtained for a flat cantilever plate, a cantilever segment of a cylinder, and for a compressor blade for a jet engine.