Bone fracture consolidates faster with low‐power laser

Abstract
Low-power laser radiation is currently used in the treatment of pain and osteoarticular inflammation. However, the mechanisms of the laser biostimulating effects on tissue are still not completely understood. With laser treatment, we have achieved activation of osseous regeneration in human bone fractures. After 7 years of positive clinical control in human beings, we decided to start an experimental study of fractures in the tibia of mice, histologically controlling its reparation after exposure to 632 nm. He/Ne laser in doses of 2.4 Joules in one point was used. The radiation was directly applied to the area of fracture in a series of 12 treatments (one treatment every second day). By optic microscope we observed, in the treated animals, an important increase in vascularization and faster formation of osseous tissue with a dense trabecular net compared to the control group, which presented only chondroid tissue and poor vascularization corresponding to an earlier stage of bone consolidation (controls were also analyzed by electron microscopy). Potentially, the laser effect might modulate the function of osteocytes, promoting faster metabolism and reaction of bone callus.

This publication has 5 references indexed in Scilit: