A mechanism for production of phase shifts in a pattern generator

Abstract
During motor activity of the pyloric system of the lobster stomatogastric ganglion, there are rhythmic alternations between activity in the pyloric dilator (PD) and pyloric (PY) motor neurons. We studied the phase relations between PD motor neuron activity and PY motor neuron activity in preparations cycling at a wide range of frequencies and after altering the activity of the PD neurons. The PY neurons fall into two classes, early (PE) and late (PL) (21), distinguished by the different phases in the pyloric cycle at which they fire. The phase at which PE neurons fired and the phase at which PL neurons fired was independent of pyloric cycle frequency over a range of frequencies from 0.5 to 2.25 Hz. The anterior burster (AB) interneuron is electrically coupled to the PD motor neurons. Together the AB and PD neurons form the pacemaker for the pyloric system. Synchronous depolarization of the AB and PD neurons evokes a complex inhibitory post-synaptic potential (IPSP) in PY neurons. This IPSP has two components: an early, AB neuron-derived component and a late, PD neuron-derived component. Deletion of the PD neurons from the pyloric circuit by photoinactivation removed the PD-evoked component of the pacemaker-evoked IPSP. This resulted in a decrease in the duration of the IPSP evoked by pacemaker depolarization and a significant advance in the firing phase of PY neurons. Bath application of dopamine was used to hyperpolarize and inhibit the PD neurons (30), causing them to release less neurotransmitter. As a consequence, the duration of the IPSP evoked by pacemaker depolarization was decreased and the firing phase of the PY neurons was significantly advanced. Stimulation of the inferior ventricular nerve (IVN) produces a slow excitation of the PD neurons (30), causing them to release more neurotransmitter. Consequently, the duration of the IPSP evoked by pacemaker depolarization was increased and the firing phase of the PY neurons was significantly retarded for several cycles of pyloric activity following IVN stimulation. Thus, modulation of the strength of PD-evoked inhibition in PY neurons is responsible for altering the firing phase of the PY neurons with respect to the pyloric pacemaker. We suggest that frequency of the pyloric output and the phase relations of the elements within the pyloric cycle can be regulated independently. The potential implications of these data for modulation of synaptic efficacy in other preparations are discussed.

This publication has 1 reference indexed in Scilit: