Mesoporous Silica Composites Containing Multiple Regions with Distinct Pore Size and Complex Pore Organization

Abstract
Porous ceramics are of great interest for filtration, catalysis, and reactive separation processes. Performance in these applications is highly dependent on features such as pore size distribution and connectivity and wall composition. Here, we describe a method allowing the rational design and synthesis of mesoporous silica composites with controlled heterogeneous pore architectures and demonstrate its validity by producing structures with predetermined placement of regions having different pore size and pore organization.