Phosphorylation and Regulation of the Na+/H+ Exchanger through Mitogen-Activated Protein Kinase

Abstract
We examined mitogen-activated protein kinase-mediated phosphorylation and activation of the Na+/H+ exchanger isoform type 1. A rabbit skeletal muscle extract was fractionated by FPLC chromatography. Four main fractions had the ability to phosphorylate the carboxyl-terminal region of NHE1. Western blot analysis and immunoprecipitation showed that three of these were associated with MAP kinase-dependent phosphorylation. Phosphorylation studies using purified MAP kinase showed that the region involved was the carboxyl-terminal 178 amino acids of the protein and that the stoichiometry was 1 phosphate/mol of protein. In-gel kinase assays showed that cytosolic extracts from smooth muscle cells also phosphorylate the carboxyl-terminal of NHE1 and that the MAP kinase-dependent phosphorylation could be activated by PDGF and AngII. Mutant cell lines with an inducible dominant negative MAP kinase showed decreased serum activation of Na+/H+ exchange but normal hypertonic activation of the protein. The results show that MAP kinase is intimately involved in regulation of the Na+/H+ exchanger, possibly through phosphorylation of one amino acid of the carboxyl-terminal cytosolic domain.

This publication has 11 references indexed in Scilit: