Abstract
Chemical shifts observed from samples that are uniformly aligned with respect to the magnetic field can be used as very high‐resolution structural constraints. This constraint takes the form of an orientational constraint rather than the more familiar distance constraint. The accuracy of these constraints is dependent upon the quality of the tensor characterization. Both tensor element magnitudes and tensor orientations with respect to the molecular frame need to be considered. Here these constraints have been used to evaluate models for the channel conformation of gramicidin A. Of the three models used, the one experimentally derived model of gramicidin in sodium dodecyl sulfate micelles fits the data least well.
Funding Information
  • NIH (AI-23007)