Hyperplasia in the spinal sensory system of the frog. II. Central and peripheral connectivity patterns

Abstract
Central and peripheral connectivity patterns of hyperplastic dorsal root ganglia (DRGs) in Rana pipiens are examined in order to determine the relative roles of peripheral and central contacts in the production of DRG hyperplasias. The hyperplasias are produced in the intact hindlimb DRGs after the removal in tadpoles and young postmetamorphic frogs of neighboring DRGs (Davis and Const an tine-Paton, '83). The peripheral target zones of the hyperplastic DRGs, determined by physiological recordings of sensory receptive fields, are found to undergo a significant degree of expansion relative to controls. Peripheral expansion is most pronounced in caudalmost DRG 10, and this effect occurs in experimental animals operated during larval and postmetamorphic stages. Further, anatomical labelling of peripheral sensory fibers coursing to the hindlimb reveals that the hyperplastic DRG 10 actually contains additional fibers projecting to the denervated regions. The central projection of the hyperplastic DRG 10 does not show corresponding increases in longitudinal arborization after the application of horseradish peroxidase to the appropriate dorsal roots. These observations are made on some of the same experimental animals in which peripheral fields are shown to have vastly expanded. We conclude that the peripheral processes of the hyperplastic DRGs are less rigidly specified than the central terminations, and that it is the periphery which plays the primary role in controlling the cell numbers increases. A second aim of this investigation is to identify whether sexually dimorphic connectivity patterns in normal frogs explain the production of DRG 10 hyperplasias exclusively in male experimental animals (Davis and Constantine-Paton, '83). We apply the same techniques used in our connectivity studies of hyperplastic DRGs to the investigation of connectivity patterns of DRG 10s in normal males and females. No sex-dependent differences in peripheral and central connectivity are found. Thus, since normal male and female frogs possess an equivalent amount of target space for DRG 10, the unique production of hyperplasias in male experimental animals cannot be explained solely on the basis of connectivity. We speculate on what other factors may be involved.