Movements near the Gate of a Hyperpolarization-activated Cation Channel
Open Access
- 13 October 2003
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 122 (5), 501-510
- https://doi.org/10.1085/jgp.200308928
Abstract
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Like the related depolarization-activated K+ channels (Kv channels), HCN channels use an intracellular activation gate to regulate access to an inner cavity, lined by the S6 transmembrane regions, which leads to the selectivity filter near the extracellular surface. Here we describe two types of metal interactions with substituted cysteines in the S6, which alter the voltage-controlled movements of the gate. At one position (L466), substitution of cysteine in all four subunits allows Cd2+ ions at nanomolar concentration to stabilize the open state (a “lock-open” effect). This effect depends on native histidines at a nearby position (H462); the lock-open effect can be abolished by changing the histidines to tyrosines, or enhanced by changing them to cysteines. Unlike a similar effect in Kv channels, this effect depends on a Cd2+ bridge between 462 and 466 in the same subunit. Cysteine substitution at another position (Q468) produces two effects of Cd2+: both a lock-open effect and a dramatic slowing of channel activation—a “lock-closed” effect. The two effects can be separated, because the lock-open effect depends on the histidine at position 462. The novel lock-closed effect results from stabilization of the closed state by the binding of up to four Cd2+ ions. During the opening conformational change, the S6 apparently moves from one position in which the 468C cysteines can bind four Cd2+ ions, possibly as a cluster of cysteines and cadmium ions near the central axis of the pore, to another position (or flexible range of positions) where either 466C or 468C can bind Cd2+ in association with the histidine at 462.Keywords
This publication has 23 references indexed in Scilit:
- Effects of As(III) Binding on α-Helical StructureJournal of the American Chemical Society, 2003
- Tight Steric Closure at the Intracellular Activation Gate of a Voltage-Gated K+ ChannelNeuron, 2001
- Blocker protection in the pore of a voltage-gated K+ channel and its structural implicationsNature, 2000
- Molecular identification of a hyperpolarization-activated channel in sea urchin spermNature, 1998
- The Structure of the Potassium Channel: Molecular Basis of K + Conduction and SelectivityScience, 1998
- Pacemaker Mechanisms in Cardiac TissueAnnual Review of Physiology, 1993
- Direct activation of cardiac pacemaker channels by intracellular cyclic AMPNature, 1991
- Crystal Structure of Cd,Zn MetallothioneinScience, 1986
- Voltage‐clamp investigations of membrane currents underlying pace‐maker activity in rabbit sino‐atrial node.The Journal of Physiology, 1980
- How does adrenaline accelerate the heart?Nature, 1979