Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains.

Abstract
CD20 is an antigen expressed on normal and malignant human B cells that is thought to function as a receptor during B cell activation. Here we report the isolation of a CD20‐specific cDNA clone from a lambda gt11 library using a polyclonal antiserum raised against purified CD20 antigen. Additional cDNA clones were then isolated from a lambda gt10 library. Alignment of the sequences of overlapping lambda clones reveal a single consensus sequence except for a divergence that preceded the first methionine within the open reading frame. Normal B cells and B cell lines contain a prominent 2.6 kb mRNA and a lower level of a 3.3 kb mRNA. An oligonucleotide derived from one of the divergent sequences hybridized to the 3.3 kb mRNA only, indicating that the two mRNA species are derived from an alternative splicing mechanism. The predicted amino acid sequence of CD20 reveals three major hydrophobic regions of approximately 53, 25 and 20 amino acids. CD20 lacks an NH2‐terminal signal peptide and contains a highly charged COOH‐terminal domain. Although CD20 is immunoprecipitated as a doublet of 33 and 35 kd proteins from B cells, in vitro translation of CD20 cDNA produced a single 33 kd protein that was specifically immunoprecipitated with monoclonal CD20 antibodies. CD20 was strongly phosphorylated on resting B cells after CDw40 stimulation, suggesting that CD20 may be functionally regulated by a protein kinase(s).