Abstract
Early embryonic development was compared in self-fertilized embryos of the diploid species, Hibiscus costatus, and triploid hybrid embryos, H. costatus-aculeatus and H. costatus-furcellatus, the paternal parent in both hybrids being tetraploid. The self-fertilized zygotes shrank to 50% of the volume of the unfertilized egg. These young embryos showed marked polarity. There was a concentration of cytoplasm in the apical cells and large vacuoles in the basal cells. There was also a polar distribution of organelles within the embryo as a whole which probably reflected initial differentiation. In comparison, hybrid zygotes shrank only about 20% of their original volume but started division at about the same time as selffertilized zygotes. There appeared to be no polarization and little proliferation of the cytoplasm in the hybrids. Large vacuoles remained prominent throughout the hybrid embryos, while organelles were few in the scant cytoplasm and no polarization of these was evident. These highly divergent hybrid embryos had become necrotic and aborted by the time the normal, self-fertilized embryos had reached the late globular stage. This altered developmental sequence of the hybrids suggests that shrinkage and rearrangement of the zygote cytoplasm is essential for normal embryonic differentiation.