Balance of Force at Curved Solid Metal−Liquid Electrolyte Interfaces

Abstract
We analyze the simultaneous mechanical and chemical equilibrium at the interface between a fluid electrolyte and a solid conductor in terms of a continuum theory, with attention to surfaces of varying orientation and of arbitrary curvature. On top of the variable which is conjugate to the surface stress, the tangential strain, we introduce an additional degree of freedom for the surface deformation, the surface stretch, to account for the observation of a reversible normal relaxation of the top atomic layer as a function of the electrochemical potential. We derive relations between the materials constants of the surface, for instance, the pressure dependence of the electric potential at constant superficial charge density, and discuss experimentsusing cantilevers or porous solidsby which they can be measured.