West Nile Virus-Induced Interferon Production Is Mediated by the Double-Stranded RNA-Dependent Protein Kinase PKR
- 15 October 2007
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 81 (20), 11148-11158
- https://doi.org/10.1128/jvi.00446-07
Abstract
Cells carry a variety of molecules, referred to as pathogen recognition receptors (PRRs), which are able to sense invading pathogens. Interaction of PRRs with viral compounds instigates a signaling pathway(s), resulting in the activation of genes, including those for type I interferon (IFN), which are critical for an effective antiviral response. Here we demonstrate that the double-stranded RNA (dsRNA)-dependent protein kinase PKR, which has been shown to function as a PRR in cells treated with the dsRNA mimetic poly(I:C), serves as a PRR in West Nile virus (WNV)-infected cells. Evidence for PKR's role as a PRR was obtained from both human and murine cells. Using mouse embryonic fibroblasts (MEFs), we demonstrated that PKR gene knockout, posttranscriptional gene silencing of PKR mRNA using small interfering RNA (siRNA), and chemical inhibition of PKR function all interfered with IFN synthesis following WNV infection. In three different human cell lines, siRNA knockdown and chemical inhibition of PKR blocked WNV-induced IFN synthesis. Using the same approaches, we demonstrated that PKR was not necessary for Sendai virus-induced IFN synthesis, suggesting that PKR is particularly important for recognition of WNV infection. Taken together, our data suggest that PKR could serve as a PRR for recognition of WNV infection.Keywords
This publication has 82 references indexed in Scilit:
- Replication of Hepatitis C Virus (HCV) RNA in Mouse Embryonic Fibroblasts: Protein Kinase R (PKR)-Dependent and PKR-Independent Mechanisms for Controlling HCV RNA Replication and Mediating Interferon ActivitiesJournal of Virology, 2006
- PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controlling Early Viral Spread in the Periphery and Replication in NeuronsJournal of Virology, 2006
- Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA VirusesJournal of Virology, 2006
- Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral responseNature, 2005
- Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virusNature, 2005
- VISA Is an Adapter Protein Required for Virus-Triggered IFN-β SignalingMolecular Cell, 2005
- Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3Cell, 2005
- IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon inductionNature Immunology, 2005
- The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responsesNature Immunology, 2004
- PKR—A protein kinase regulated by double-stranded RNAThe International Journal of Biochemistry & Cell Biology, 1997