Myosin polymorphism in single fibers of chronically stimulated rabbit fast-twitch muscle

Abstract
Rabbit tibialis anterior (TA) muscles were indirectly stimulated (10 Hz, 24 h/d) for 30 d and 60 d and single fibers were analysed using a combined histochemical and biochemical technique (Staron and Pette 1986, 1987a, b). After 30 d of chronic stimulation there was a pronounced increase in the normally rare (0.5%) C fiber population (i.e., fibers containing slow- and fast-myosins in varying ratios). At this time, C fibers amounted to almost 60% of the total population. In the 60 d stimulated muscles, the major population (98%) consisted of an atypical type It fiber. This fiber type which was not detectable in normal TA muscle, differed histochemically and biochemically from type I fibers. It contained the slow-myosin light chains LC1s and LC2s, the heavy chain HCI, and, in addition, high concentrations of the fast-myosin alkali light chain LC1f and possibly traces of a heavy chain with an electrophoretic mobility comparable with that of the fast-myosin heavy chain HCIIa. These It fibers were occasionally observed in the unstimulated, contralateral TA muscles which also contained an increased population of C fibers (1.3–6.3%). Although the transformation even after 60 d of chronic stimulation was incomplete, these changes demonstrate the ability of muscle fibers to adapt in a specific manner to altered functional demands brought about by an altered stimulus pattern. In addition, the pronounced heterogeneity of the fiber population undergoing transformation indicates a nonuniform response to a uniform stimulus pattern.

This publication has 34 references indexed in Scilit: