Doxorubicin Loaded pH-sensitive Micelle: Antitumoral Efficacy against Ovarian A2780/DOXR Tumor
- 1 May 2008
- journal article
- research article
- Published by Springer Nature in Pharmaceutical Research
- Vol. 25 (9), 2074-2082
- https://doi.org/10.1007/s11095-008-9603-6
Abstract
Purpose To evaluate pH-sensitive mixed micelles for multidrug resistant (MDR) ovarian tumor targeting and optical imaging of solid tumors. Method Doxorubicin (DOX) encapsulated pH-sensitive mixed micelles composed of poly(l-histidine)(MW 5K)-b-PEG(MW 2K) and poly(l-lactic acid)(3K)-b-PEG (2K)-folate (PHSM-f) were prepared. Folate receptor-mediated endocytosis, drug uptake, endosomal disruption and cell viability were investigated at the cellular level. For in vivo tumor growth inhibition tests, multidrug resistant ovarian A2780/DOXR xenografted nude mice were used. Optical imaging was performed by using a Cy5.5 fluorescence dye-labeled mixed micelle system. Cy5.5 fluorescence intensity at the tumor site was measured in KB epidermoid xenografted nude mice. Results In vitro cell viability and drug distribution in the cytoplasm demonstrated the significantly superior efficacy of PHSM-f to free DOX and a control sample of DOX loaded pH-insensitive micelle composed of poly(l-lactic acid)(3K)-b-PEG(2K)/poly(l-lactic acid)(3K)-b-PEG(2K)-folate (80/20 wt/wt%) (PHIM-f). The mechanisms of these results were proved by folate receptor mediated endocytosis of micelle and endosomal disruption function by it. In addition, the optical imaging demonstrated the future application of the diagnositic area. PHSM-f inhibited the growth of multidrug resistant ovarian tumors efficiently in mice, with minimum weight loss. Conclusions The pH-sensitive mixed micelle system demonstrates effective antitumor efficacy against the multidrug resistant ovarian tumor A2780/DOXR.This publication has 47 references indexed in Scilit:
- Physicochemical characteristics of pH-sensitive poly(l-Histidine)-b-poly(ethylene glycol)/poly(l-Lactide)-b-poly(ethylene glycol) mixed micellesJournal of Controlled Release, 2008
- Acidic Hydrolysis of N-Ethoxybenzylimidazoles (NEBIs): Potential Applications as pH-Sensitive Linkers for Drug DeliveryBioconjugate Chemistry, 2007
- Targeting multidrug resistance in cancerNature Reviews Drug Discovery, 2006
- Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumorJournal of Controlled Release, 2005
- Polyacetal−Doxorubicin Conjugates Designed for pH-Dependent DegradationBioconjugate Chemistry, 2003
- Current Status of Taxane and Platinum-Based Chemotherapy in Ovarian CancerJournal of Clinical Oncology, 2003
- Polymeric micelles – a new generation of colloidal drug carriersEuropean Journal of Pharmaceutics and Biopharmaceutics, 1999
- Enantioselective Release of 5-Fluorouracil from N-(2-Hydroxypropyl)methacrylamide-Based Copolymers via Lysosomal EnzymesBioconjugate Chemistry, 1995
- Biodegradable Microspheres in Drug DeliveryCritical Reviews in Therapeutic Drug Carrier Systems, 1995
- Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in cultureEuropean Journal Of Cancer, 1994