Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle
- 27 May 2008
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (21), 7410-7415
- https://doi.org/10.1073/pnas.0801318105
Abstract
The daily production of 200 billion erythrocytes requires 20 mg of iron, accounting for nearly 80% of the iron demand in humans. Thus, erythroid precursor cells possess an efficient mechanism for iron uptake in which iron loaded transferrin (Tf) binds to the transferrin receptor (TfR) at the cell surface. The Tf:TfR complex then enters the endosome via receptor-mediated endocytosis. Upon endosomal acidification, iron is released from Tf, reduced to Fe(2+) by Steap3, and transported across the endosomal membrane by divalent metal iron transporter 1. Steap3, the major ferrireductase in erythrocyte endosomes, is a member of a unique family of reductases. Steap3 is comprised of an N-terminal cytosolic oxidoreductase domain and a C-terminal heme-containing transmembrane domain. Cytosolic NADPH and a flavin are predicted cofactors, but the NADPH/flavin binding domain differs significantly from those in other eukaryotic reductases. Instead, Steap3 shows remarkable, although limited homology to FNO, an archaeal oxidoreductase. We have determined the crystal structure of the human Steap3 oxidoreductase domain in the absence and presence of NADPH. The structure reveals an FNO-like domain with an unexpected dimer interface and substrate binding sites that are well positioned to direct electron transfer from the cytosol to a heme moiety predicted to be fixed within the transmembrane domain. Here, we discuss possible gating mechanisms for electron transfer across the endosomal membrane.Keywords
This publication has 40 references indexed in Scilit:
- MolProbity: all-atom contacts and structure validation for proteins and nucleic acidsNucleic Acids Research, 2007
- Coordinated Regulation of Nutrient and Inflammatory Responses by STAMP2 Is Essential for Metabolic HomeostasisCell, 2007
- The Steap proteins are metalloreductasesBlood, 2006
- Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensionsActa Crystallographica Section D-Biological Crystallography, 2004
- Coot: model-building tools for molecular graphicsActa Crystallographica Section D-Biological Crystallography, 2004
- Refinement of Macromolecular Structures by the Maximum-Likelihood MethodActa Crystallographica Section D-Biological Crystallography, 1997
- The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cellsBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1997
- [20] Processing of X-ray diffraction data collected in oscillation modeMethods in Enzymology, 1997
- The CCP4 suite: programs for protein crystallographyActa Crystallographica Section D-Biological Crystallography, 1994
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976