Barium Influx Mediated by the Cardiac Sodium-Calcium Exchanger in Transfected Chinese Hamster Ovary Cells

Abstract
We examined Ba2+ influx using isotopic and fura-2 techniques in transfected Chinese hamster ovary cells expressing the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). Ba2+ competitively inhibited exchange-me diated 45Ca2+ uptake with a Ki ∼ 3 mM. Ba2+ uptake was stimulated by pretreating the cells with ouabain and by removing extracellular Na+, as expected for Na+/Ba2+ exchange activity. The maximal velocity of Ba2+ accumulation was estimated to be 50% of that for Ca2+. When the monovalent cation ionophore gramicidin was used to equilibrate internal and external concentrations of Na+, Ba2+ influx was negligible in the absence of Na+ and increased to a maximum at 20–40 mM Na+. At higher Na+ concentrations, Ba2+ influx declined, presumably due to the competition between Na+ and Ba2+ for transport sites on the exchanger. Unlike Ca2+, Ba2+ did not appear to be taken up by intracellular organelles: Thus, 133Ba2+ uptake in ouabain-treated cells was not reduced by mitochondrial inhibitors such as Cl-CCP or oligomycin-rotenone. Moreover, intracellular Ca2+ stores that had been depleted of Ca2+ by pretreatment of the cells with ionomycin (a Ca2+ ionophore) remained empty during a subsequent period of Ba2+ influx. Ca2+ uptake or release by intracellular organelles secondarily regulated exchange activity through alterations in [Ca2+]i. Exchange-mediated Ba2+ influx was inhibited when cytosolic [Ca2+] was reduced to 20 nM or less and was accelerated at cytosolic Ca2+ concentrations of 25–50 nM. We conclude that (a) Ba2+ substitutes for Ca2+ as a transport substrate for the exchanger, (b) cytosolic Ba2+ does not appear to be sequestered by intracellular organelles, and (c) exchange-mediated Ba2+ influx is accelerated by low concentrations of cytosolic Ca2+.

This publication has 36 references indexed in Scilit: