On the complexity of kinodynamic planning

Abstract
The following problem, is considered: given a robot system find a minimal-time trajectory from a start position and velocity to a goal position and velocity, while avoiding obstacles and respecting dynamic constraints on velocity and acceleration. The simplified case of a point mass under Newtonian mechanics together with velocity and acceleration bounds is considered. The point must be flown from a start to a goal, amid 2-D or 3-D polyhedral obstacles. While exact solutions to this problem are not known, the first provably good approximation algorithm is given and shown to run in polynomial time.

This publication has 11 references indexed in Scilit: