Fundamental performance limits and efficient polices for Transportation-On-Demand systems

Abstract
Transportation-On-Demand (TOD) systems, where users generate requests for transportation from a pick-up point to a delivery point, are already very popular and are expected to increase in usage dramatically as the inconvenience of privately-owned cars in metropolitan areas becomes excessive. Routing service vehicles through customers is usually accomplished with heuristic algorithms. In this paper we study TOD systems in a formal setting that allows us to characterize fundamental performance limits and devise dynamic routing policies with provable performance guarantees. Specifically, we study TOD systems in the form of a unit-capacity, multiple-vehicle dynamic pick-up and delivery problem, whereby pick-up requests arrive according to a Poisson process and are randomly located according to a general probability density. Corresponding delivery locations are also randomly distributed according to a general probability density, and a number of unit-capacity vehicles must transport demands from their pick-up locations to their delivery locations. We derive insightful fundamental bounds on the steady-state waiting times for the demands, and we devise constant-factor optimal dynamic routing policies. Simulation results are presented and discussed.

This publication has 20 references indexed in Scilit: