Phentolamine block of K ATP channels is mediated by Kir6.2
Open Access
- 14 October 1997
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 94 (21), 11716-11720
- https://doi.org/10.1073/pnas.94.21.11716
Abstract
The ATP-sensitive K+-channel (KATP channel) plays a key role in insulin secretion from pancreatic β cells. It is closed both by glucose metabolism and the sulfonylurea drugs that are used in the treatment of noninsulin-dependent diabetes mellitus, thereby initiating a membrane depolarization that activates voltage-dependent Ca2+ entry and insulin release. The β cell KATP channel is a complex of two proteins: Kir6.2 and SUR1. The former is an ATP-sensitive K+-selective pore, whereas SUR1 is a channel regulator that endows Kir6.2 with sensitivity to sulfonylureas. A number of drugs containing an imidazoline moiety, such as phentolamine, also act as potent stimulators of insulin secretion, but their mechanism of action is unknown. We have used a truncated form of Kir6.2, which expresses independently of SUR1, to show that phentolamine does not inhibit KATP channels by interacting with SUR1. Instead, our results argue that phentolamine may interact directly with Kir6.2 to produce a voltage-independent reduction in channel activity. The single-channel conductance is unaffected. Although the ATP molecule also contains an imidazoline group, the site at which phentolamine blocks is not identical to the ATP-inhibitory site, because phentolamine block of an ATP-insensitive mutant (K185Q) is normal. KATP channels also are found in the heart where they are involved in the response to cardiac ischemia: they also are blocked by phentolamine. Our results suggest that this may be because Kir6.2, which is expressed in the heart, forms the pore of the cardiac KATP channel.Keywords
This publication has 26 references indexed in Scilit:
- Neurotensin Inhibition of the Hyperpolarization‐Activated Cation Current (Ih) in the Rat Substantia Nigra Pars Compacta Implicates the Protein Kinase C PathwayThe Journal of Physiology, 1997
- Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptorNature, 1997
- A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ ChannelsNeuron, 1996
- Cloning and functional expression of the cDNA encoding a novel ATP‐sensitive potassium channel subunit expressed in pancreatic β‐cells, brain, heart and skeletal muscleFEBS Letters, 1995
- Reconstitution of I KATP : An Inward Rectifier Subunit Plus the Sulfonylurea ReceptorScience, 1995
- Cloning and expression of an inwardly rectifying ATP-regulated potassium channelNature, 1993
- Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchangerNature, 1991
- Properties and functions of ATP-sensitive K-channelsCellular Signalling, 1990
- PhentolamineAmerican Heart Journal, 1976
- Hemodynamic effects of steroids in cardiac diseaseAmerican Heart Journal, 1976