Principles of Cell Volume Regulation

Abstract
Cell volume is determined by the content of osmotically active solute (cell osmoles) and the osmolarity of the extracellular fluid. Cell osmoles consist of non-diffusible and diffusible solutes. A large fraction of the diffusible cation content balances negative charges on the non-diffusible solutes. The content of diffusible solutes is determined by the electrochemical gradients driving them across the plasma membrane and the availability and activity of transport pathways in the membrane. The classical view that the sodium pump offsets passive leaks must be modified to accomodate the contributions of a number of secondary active transport processes, as well as to allow for changes in cell nondiffusible osmoles and in their net negative charge. The behaviour of cells in anisosmotic media is often different from that predicted for a perfect osmometer. In many cases this is a consequence of changes in cell osmole content. However, caution is required in extrapolating from in vitro responses of isolated cells to large, acutely induced changes in medium osmolality to the responses of tissues in vivo to more subtle changes in extracellular osmolality.