Nitric Oxide Inactivates Glyoxalase I in Cooperation with Glutathione

Abstract
We previously found that glyoxalase I (Glo I) is inactivated upon exposure of human endothelial cells to extracellular nitric oxide (NO), and this event correlates with an increase in its pI on two-dimensional gels. In this study, we demonstrate that NO can modulate Glo I activity in cooperation with cellular glutathione (GSH). Severe depletion of intracellular GSH prevents the inactivation of Glo I in response to NO, although such depletion enhances the inactivation of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a well-known enzyme susceptible to NO-induced oxidation. S-Nitrosoglu-tathione (GSNO), an adduct of GSH and NO, lowers the activity of purified human Glo I, while S-nitrosocysteine (CysNO) inactivates the enzyme only in the presence of GSH. This indicates that a dysfunction in Glo I would require the formation of GSNO in situ. Competitive inhibitors of Glo I, S-(4-bromobenzyl)glutathione and its membrane-permeating form, completely abolish the NO action in vitro and inside cells, respectively. Taken together, these results reveal that Glo I can interact directly with GSNO, and that the interaction converts Glo I into an inactive form. Moreover, the data suggest that the substrate recognition site of Glo I might be involved in the interaction with GSNO.