Abstract
Translocations involving a breakpoint cluster region of the MLL gene at chromosome band 11q23 are the most common molecular abnormalities in acute leukemias of infants and acute leukemias related to chemotherapy with DNA topoisomerase II inhibitors. Molecular cloning of MLL genomic breakpoints by PCR has previously been difficult because MLL has many translocation partners and several breakpoints involve unknown partner genes. We review a new approach to MLL genomic breakpoint cloning called panhandle PCR. By adding an oligonucleotide sequence to the unknown 3′ partner gene that is complementary to a known 5′ MLL sequence, we have been able to generate a genomic template with an intrastrand loop for PCR schematically shaped like a pan with a handle. The intrastrand loop contains the translocation breakpoint and unknown partner DNA, while the handle contains the known 5′ sequence from MLL and a complement to that sequence. Primers both derived from MLL are used to amplify the breakpoint by panhandle PCR. Panhandle PCR offers the advantage of having specificity for the strand of interest at both primer annealing sites without requiring specific primers for the many partner genes of MLL. Panhandle PCR is a straightforward method that represents a technical advance in MLL genomic breakpoint cloning.