Relaxation process of the electron velocity distribution in neon

Abstract
The relaxation process from an initial velocity distribution to the equilibrium distribution for electrons in neon is calculated by a finite difference method for the ratios of electric field to gas number density E/N between 56.6 and 566 Td (E/p0=20 and 200 V cm-1Torr-1at 0 degrees C) without using the usual two-term spherical harmonics expansion of the velocity distribution. The pulsed Townsend condition, in which the evolution of all the electrons involved in an avalanche is observed as a function of time only, is assumed. The results suggest that the electron velocity distribution reaches through randomisation the equilibrium distribution which has a structure with a minimum near the origin in the velocity space.