Abstract
Some ablating bodies entering the atmosphere will melt or soften. Under deceleration, the soft or melted surface will tend to develop instabilities of the Lamb-Taylor type. Two situations involving viscous incompressible fluids are investigated here: one where the liquid layer has constant viscosity and finite thickness, and the other, where the viscosity increases exponentially with distance away from the interface, and the layer is semi-infinite in extent. It can be demonstrated, that if one neglects gradients in the flow direction, the rate of growth of interface disturbances in a plane normal to the axis of an axially symmetric blunt body is independent of the flow velocity. The fact that the deceleration and liquid thickness vary with time along a trajectory is also included in the analysis. Results of calculations for the amplification factor and the most amplified wavelength are given. A mechanism due to the deceleration is postulated, which would cause the formation of longitudinal grooves on the surface of an axially symmetric blunt body while entering the atmosphere.

This publication has 1 reference indexed in Scilit: