Retinoic acid treatment and cell aggregation independently regulate alternative splicing in P19 cells during neural differentiation

Abstract
To induce neural differentiation of P19 cells, two different treatments, RA (retinoic acid) and cell aggregation, are required. However, there has been no report that RA treatment alone or cell aggregation alone could control alternative splicing regulation in P19 cells. Therefore, we focused on alternative splicing effects by neural induction (RA treatment and/or cell aggregation) in P19 cells. We analysed the splicing patterns of several genes, including 5-HT3R-A (5-hydroxytryptamine receptor), Actn1 (actinin alpha1), CUGBP2 (CUG-binding protein) and PTB (polypyrimidine track-binding protein), which showed different responses during the early neural induction of P19 cells. We show here that RA treatment alone changes the alternative splice mechanism of 5-HT3R-A. Cell aggregation alone controls alternative splicing regulation of Actn1. Both treatments (RA and cell aggregation) compensate and regulate the alternative splicing mechanism of CUGBP2. However, PTB is independent of RA and cell aggregation. Taken together, our results suggest that RA treatment and cell aggregation independently regulate the alternative splicing mechanism in the early stage of P19 cells during neural differentiation.