Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix.
- 1 December 1987
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 84 (23), 8568-8572
- https://doi.org/10.1073/pnas.84.23.8568
Abstract
Monoclonal antibodies against an alpha-helical region of the iron-containing, oxygen-binding protein myohemerythrin were isolated following immunization of mice with either the whole protein or a peptide homolog of the helix. Three distinct epitopes within the myohemerythrin helix were identified. The individual residues within two of these epitopes that were essential for antibody binding were determined by measuring antibody binding to a set of peptides in which each amino acid of the epitope was replaced in turn by each of the other 19 amino acids. Hydrophilic residues that are exposed in the native conformation and buried, hydrophobic residues were both shown to be irreplaceable, suggesting their direct involvement in antibody binding. The influence of antigen conformation on antibody binding to these amphipathic epitopes was assessed by measuring the relative affinities of the antibodies for peptides, intact protein, and apoprotein. All of the antibodies bound to apoprotein better than to native protein, indicating that relaxation of the native structure by removal of the iron center increases antibody affinity for myohemerythrin. However, not all of the antibodies tested bound to peptides better than to protein, suggesting that increased antigen flexibility is not always sufficient to maximize antibody binding. Antibody binding to peptides appeared to also be influenced by the ability of the peptides to attain secondary structure at the epitopes, either alone or due to carrier influences.This publication has 31 references indexed in Scilit:
- Structure of myohemerythrin in the azidomet state at resolutionJournal of Molecular Biology, 1987
- Antibody response to the C-terminal peptide sequence in beef myoglobinMolecular Immunology, 1986
- Intrinsic and Extrinsic Factors in Protein Antigenic StructureScience, 1985
- Equilibrium in the protein-immobilized-ligand-soluble-ligand system: Estimation of dissociation constants of protein-soluble-ligand complexes from binding-inhibition dataMolecular Immunology, 1985
- Correlation between segmental mobility and the location of antigenic determinants in proteinsNature, 1984
- Some redox properties of myohemerythrin from retractor muscle of Themiste zostericolaBiochemistry, 1981
- Prediction of protein antigenic determinants from amino acid sequences.Proceedings of the National Academy of Sciences, 1981
- New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugatesBiochemistry, 1979
- The primary structure of myohemerythrinBiochemistry, 1976
- Immunochemical studies on lysozyme and carboxymethylated lysozymeBiochemistry, 1970