The oxidation of hexane in the cool-flame region

Abstract
The chemical nature of the cool flame of hexane at 300 degrees C, maintained stationary in a flow system at atmospheric pressure, has been investigated. The relative intensities of cool flames obtained from mixtures of differing composition have been measured, using a photomultiplier cell, and correlated with analyses made of the complex mixture of reaction products. The stationary two-stage flames which may be obtained at either higher oxygen concentrations or higher pressures than the cool flame are also described, and investigated similarly. The results are examined in the light of a theory of combustion of the higher hydrocarbons via aldehydes and hydroxyl radicals, which is an extension of a mechanism derived for the oxidation of methane. This receives considerable support, particularly from the identification of the complete homologous series of saturated aldehydes which can result from the hexane molecule. Associated with these reactions are others due to the greater stability of peroxide radicals at 300 degrees C than at the higher temperatures of methane oxidation. Thus the building up of a partial pressure of hydroperoxide sufficient to ignite in the presence of oxygen may initiate the cool flame, and considerable amounts of cyclic ethers have been found which probably had a peroxidic precursor.