Abstract
In anaerobically adapted samples of synchronized cultures of the unicellular green alga Scenedesmus obliquus it was observed that both the rate and the maximum volume of hydrogen produced in the light changed in a parallel fashion over the life cycle. These two parameters of cells of the 16th h were 3 times greater than the comparable values for cells of the 8th h. Although both photosystems are involved in photohydrogen production the patterns seen over a complete life cycle (24 h) for hydrogen metabolism was inverse to that noted for changes in the photosynthetic capacity. The provision of either glucose, ethanol or acetate to 8th and 16th h cultures enhanced photohydrogen production of the 8th to the same level as the 16th h. From these findings, and also from the observation that the starch content is low at the 8th but 4 fold at the 16th h, it is apparent that in autotrophic cultures an endogenous organic compound, and not water, serves as the electron donor for photohydrogen production. Since free glucose was not detected the natural substrate is most likely starch. From experiments with monochromatic light and observations on the inhibitory action of DCMU and DBMIB on photohydrogen production we conclude that the major portion of the machinery for photohydrogen production in Scenedesmus requires both PS I and PS II participation and the input of electrons from the natural substrate proceeds through PS II. The alternate possibility that glucose, acetate and ethanol also act as inhibitors of reactions, most probably photophosphorylation, which compete with photohydrogen production was suggested by some experiments. The subsequent modulation of hydrogenase activity was discussed as a possible reason for the enhancement of photohydrogen production.