Abstract
The mean parasite burden of a population of Tribolium confusum is shown to rise to a plateau as the exposure density of infective eggs of Hymenolepis diminuta increases. The level of this plateau is shown to be dependent on the nutritional status of the host population, being depressed from approximately 18 cysticercoids/beetle in hosts which have been starved prior to experimentation, to approximately 2 cysticercoids/beetle in satiated hosts. A simple model is used to describe the shape of this infection functional response in terms of the predator–prey interaction between hosts (T. confusum) and parasite infective stages (H. diminuta eggs). The distribution of successful infections/host is shown to be over-dispersed, even when hosts are exposed to infective stages arranged in a uniform spatial pattern. The over-dispersion of parasite numbers/host is shown to become more severe as the spatial pattern of infective stages changes from under-dispersed, through random, to over-dispersed. Experimental results are discussed in relation to the dynamics of parasite–host interactions, in which infection takes place by host ingestion of a free-living infective stage.