Potassium monopersulfate and a water-soluble manganese porphyrin complex, [Mn(TMPyP)](OAc)5, as an efficient reagent for the oxidative cleavage of DNA

Abstract
Reported studies indicate that the association of potassium monopersulfate with [Mn-(TMPyP)](OAc)5, a water-soluble manganese porphyrin complex, leads to an efficient reagent for the oxidative cleavage of DNA. Single-strand breaks (SSBs) are observed on double-stranded DNA at manganese porphyrin concentrations as low as 0.5 nM with a short incubation time of 1 min. The number of SSBs linearly varies with the concentration of the manganese complex, and potassium monopersulfate is at least 3 orders of magnitude more efficient as oxygen source than hydrogen peroxide. Cleavage efficiency is optimal in the pH range 7.5-9.0 for a NaCl concentration between 80 and 150 mM or for a MgCl2 concentration of 10mM. At very low manganese porphyrin concentration and by increasing the incubation time a catalytic cleavage activity of the complex is evidenced: up to 5 SSBs per manganese porphyrin are observed. The high clevage activity of the monopersulfate-manganese porphyrin system makes it a good candidate for DNA-footprinting experiment.