Lateral Phase Separations in Membrane Lipids and the Mechanism of Sugar Transport in Escherichia coli
- 1 August 1973
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 70 (8), 2271-2275
- https://doi.org/10.1073/pnas.70.8.2271
Abstract
Changes in slope of Arrhenius plots for transport can, in some instances, be detected at two different temperatures for cells that have a relatively simple fatty-acid composition in the membrane lipids. These characteristic temperatures correlate with the characteristic temperatures that define changes of state in membrane phospholipids as revealed by the paramagnetic resonance of the spin label TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl). The higher of these characteristic temperatures is that at which the formation of solid patches of membrane lipids is first detected. The lower is the end point of the course of lateral phase separations, at which all the membrane lipids are in a solid phase. For cells enriched for elaidic acid, the rate of transport increase by as much as 2-fold as the temperature is decreased by less than 1 degrees , at the higher characteristic temperature. At this characteristic temperature, lateral phase separations begin in the membrane phospholipids. This is also the temperature where one predicts a striking increase in the lateral compressibility of the membrane lipids. These data are thus interpreted to indicate that a component of the transport system vertically penetrates one or both monolayer faces of the membrane during transport, or that some other event involving the lateral compression of the phospholipids is important for transport.Keywords
This publication has 21 references indexed in Scilit:
- Lateral phase separation in phospholipid membranesBiochemistry, 1973
- Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopyBiochimica et Biophysica Acta (BBA) - Biomembranes, 1972
- Lateral Diffusion in Spin-Labeled Phosphatidylcholine MultilayersJournal of the American Chemical Society, 1972
- Composition, structure and phase transition in yeast fatty acid auxotroph membranes: Spin labels and freeze‐fractureJournal of Supramolecular Structure, 1972
- The Molecular Organization of Lipids in the Membrane of Escherichia coli: Phase TransitionsProceedings of the National Academy of Sciences, 1971
- Hybridization of membranes by sonic irradiationBiochemistry, 1971
- Correlation of In Vivo and In Vitro Phase Transitions of Membrane Lipids in Escherichia coliProceedings of the National Academy of Sciences, 1970
- Molecular interactions in mixed lecithin systemsBiochimica et Biophysica Acta (BBA) - Biomembranes, 1970
- X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawiiJournal of Molecular Biology, 1970
- The effect of fluoride on succinic oxidase systemBiochemical Journal, 1952