Phase I study of mitoxantrone plus etoposide with multidrug blockade by SDZ PSC-833 in relapsed or refractory acute myelogenous leukemia.

Abstract
PURPOSE Expression of the multidrug resistance gene (MDR1) p170 protein is frequent in leukemic blasts from patients with relapsed acute myelogenous leukemia (AML). A phase I study using the nonimmunosuppressive MDR1 blocker SDZ PSC-833 (PSC) in combination with mitoxantrone (MITO) and etoposide (VP) was performed. PATIENTS AND METHODS Starting doses (LVL0) of MITO (3.25 mg/m2/d on days 1 and 3 to 6) and VP (210 mg/m2/d on days 1 and 3 to 5) were 40% of the maximal-tolerated dose (MTD) from a prior study. A 1.5-mg/kg loading dose of PSC was followed by a 120-hour continuous infusion of 10 mg/kg/d on days 2 to 6. Blood samples for PSC, MITO, and VP pharmacokinetics (PK) were taken on days 1 and 3, and samples for MDR1 expression were taken on day 0. RESULTS Severe mucositis developed in all patients at LVL0; therefore, MITO and VP doses were reduced to 2.5 and 170 mg/m2 (LVL-1) for the next seven patients, and this dose proved to be MTD. All LVL0 and three LVL-1 patients had transient elevations in the serum bilirubin level to > or = 4 mg/dL. Serum creatinine level increased to greater than 2 mg/dL in one case. There were no other grade 3 or 4 nonhematologic toxicities observed. The peripheral blood was cleared of leukemia in three LVL0 and four LVL-1 patients. The marrow was cleared of leukemic cells in one LVL0 and five LVL-1 patients, and a significant reduction in marrow leukemic infiltrate was observed in eight of 10. No patient achieved complete remission (CR), and all died of progressive disease (n = 8) or infection (n = 2). MDR1 expression was detected by fluorescent-activated cell sorter (FACS) analysis in five of seven cases. An elevated MDR1 mRNA level was detected by quantitative polymerase chain reaction (Q-PCR) in six of eight cases studied. Clearing of leukemia cells from the marrow occurred in four of six MDR1-positive and one of three MDR1-negative patients. Despite the fact that LVL0 doses had to be reduced due to toxicity, coadministration of PSC did not produce a consistent effect on MITO PK; however, it did repeatedly lead to increased levels of VP in the serum. CONCLUSION We conclude that PSC-MITO-VP is a tolerable regimen with antileukemic activity. Addition of PSC necessitated a 66% reduction in MITO and VP doses from a prior study without PSC.