Specific and direct measurement of the?-1,3-glucan in developing cotton fiber

Abstract
The reaction of N,N-diethylaziridinium chloride with raw cotton (Gossypium hirsutum L.) seed fibers to introduce N,N-diethylaminoethyl (DEAE) substituents at a low degree of substitution was used for demonstrating the presence of O(4)H, characteristic of a β-1,3-glucan. The derivatized 1,3-glucan/cellulose was hydrolyzed to DEAE-glucoses that were analyzed by gas-liquid chromatography. Capillary columns proved effective for measuring the small amounts of 4-O-DEAE-glucose in the presence of major amounts of 2-O- and 6-O-DEAE-glucoses. Analyses of raw cotton fibers were carried out through fiber development (20, 27, 34, 41 and 48 d post anthesis, DPA) and field exposure (62, 83 and 104 DPA) periods. The yields of 4-O- and other individual DEAE-glucoses and the yield of 4-O-DEAE-glucose in relation to 2-O-DEAE-glucose were particularly informative concenring the role of the β-1,3-glucan in cellulose. The results confirmed the early production and almost immediate decrease of the β-1,3-glucan and demonstrated continued production of accessible cellulose followed by a sharp decrease in accessibility after boll opening. The β-1,3-glucan content of the raw cotton fiber, estimated from the yield of 4-O-DEAE-glucose (representing 1,3-glucan) and the yield of 2-O-DEAE-glucose (approximating 1,3-glucan plus cellulose) was 10%, 4%, 1% and 0.6% at, in the order given, 20, 27, 48, and 104 DPA. These results are in general agreement with other conventional analyses.