Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle
Open Access
- 1 January 2004
- journal article
- clinical trial
- Published by American Physiological Society in American Journal of Physiology-Endocrinology and Metabolism
- Vol. 286 (1), E85-E91
- https://doi.org/10.1152/ajpendo.00237.2003
Abstract
Carnitine palmitoyltransferase I (CPT I) is considered the rate-limiting enzyme in the transfer of long-chain fatty acids (LCFA) into the mitochondria and is reversibly inhibited by malonyl-CoA (M-CoA) in vitro. In rat skeletal muscle, M-CoA levels decrease during exercise, releasing the inhibition of CPT I and increasing LCFA oxidation. However, in human skeletal muscle, M-CoA levels do not change during moderate-intensity exercise despite large increases in fat oxidation, suggesting that M-CoA is not the sole regulator of increased CPT I activity during exercise. In the present study, we measured CPT I activity in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondria isolated from human vastus lateralis (VL), rat soleus (Sol), and red gastrocnemius (RG) muscles. We tested whether exercise-related levels (∼65% maximal O2uptake) of calcium and adenylate charge metabolites (free AMP, ADP, and Pi) could override the M-CoA-induced inhibition of CPT I activity and explain the increased CPT I flux during exercise. Protein content was ∼25-40% higher in IMF than in SS mitochondria in all muscles. Maximal CPT I activity was similar in IMF and SS mitochondria in all muscles (VL: 282 ± 46 vs. 280 ± 51; Sol: 390 ± 81 vs. 368 ± 82; RG: 252 ± 71 vs. 278 ± 44 nmol·min-1·mg protein-1). Sensitivity to M-CoA did not differ between IMF and SS mitochondria in all muscles (25-31% inhibition in VL, 52-70% in Sol and RG). Calcium and adenylate charge metabolites did not override the M-CoA-induced inhibition of CPT I activity in mitochondria isolated from VL, Sol, and RG muscles. Decreasing pH from 7.1 to 6.8 reduced CPT I activity by ∼34-40% in both VL mitochondrial fractions. In summary, this study reports no differences in CPT I activity or sensitivity to M-CoA between IMF and SS mitochondria isolated from human and rat skeletal muscles. Exercise-induced increases in calcium and adenylate charge metabolites do not appear responsible for upregulating CPT I activity in human or rat skeletal muscle during moderate aerobic exercise.Keywords
This publication has 29 references indexed in Scilit:
- Origins and Consequences of Mitochondrial Variation in Vertebrate MuscleAnnual Review of Physiology, 2003
- The Mitochondrial Carnitine Palmitoyltransferase System — From Concept to Molecular AnalysisEuropean Journal of Biochemistry, 1997
- Behavior of Mitochondria in the Living CellInternational Review of Cytology, 1990
- Identification by flow cytometry of two distinct rhodamine‐123‐stained mitochondrial populations in rat liverFEBS Letters, 1989
- Effects of fasting and malonyl CoA on the kinetics of carnitine palmitoyltransferase and carnitine octanoyltransferase in intact rat liver mitochondriaFEBS Letters, 1981
- Subsarcolemmal mitochondria and capillarization of soleus muscle fibers in young rats subjected to an endurance trainingCell and tissue research, 1976
- Enveloping layer and periderm of the trout embryo (Salmo trutta fario L.)Cell and tissue research, 1976
- Lactate content and pH in muscle samples obtained after dynamic exercisePflügers Archiv - European Journal of Physiology, 1976
- Percutaneous Needle Biopsy of Skeletal Muscle in Physiological and Clinical ResearchScandinavian Journal of Clinical and Laboratory Investigation, 1975
- [1] Citrate synthasePublished by Elsevier ,1969