Mott Transition, Antiferromagnetism, and d-wave Superconductivity in Two-Dimensional Organic Conductors
Abstract
We study the Mott transition, antiferromagnetism and superconductivity in layered organic conductors using Cellular Dynamical Mean Field Theory for the frustrated Hubbard model. A d-wave superconducting phase appears between an antiferromagnetic insulator and a metal for $t^{\prime}/t=0.3-0.7 $, or between a nonmagnetic Mott insulator (spin liquid) and a metal for $t^{\prime}/t\geq 0.8$, in agreement with experiments on layered organic conductors including $\kappa $-(ET)$_{2}$Cu$_{2}$(CN)$_{3}$. These phases are separated by a strong first order transition. The phase diagram gives much insight into the mechanism for d-wave superconductivity. Two predictions are made.