SPIN LABELED CYSTEINES AS SENSORS FOR PROTEIN‐LIPID INTERACTION AND CONFORMATION IN RHODOPSIN

Abstract
In stoichiometric amounts, the spin label N-tempoyl-(p-chloromercuribenzamide) reacts rapidly with one cysteine residue in membrane-bound bovine rhodopsin. This residue is distinct from the two reactive cysteines previously used as attachment sites for spectroscopic labels, and is on the external surface of the protein near the cytoplasmic membrane/aqueous interface. The spin-labeled side chain has revealed a light-induced conformational change in membrane-bound rhodopsin that is apparently not associated with protein aggregation. The changes are reversible upon the addition of 11-cis retinal, and the magnitude of the change is dependent on the identity of the phospholipid in the surrounding bilayer. Alteration of lipid composition has a much larger effect on bleached rhodopsin than rhodopsin itself, indicating that the former is more readily deformable in response to changes in bilayer properties. This is consistent with the loss of 11-cis retinal binding energy in opsin compared to rhodopsin. These results provide direct structural evidence that the conformation of a membrane protein can be modulated by the lipid properties.