Influence of Pedalling Rate and Power Output on Energy Expenditure During Bicycle Ergometry

Abstract
After review of previous studies, it seemed desirable to investigate further the interrelationships between pedalling rate, power output, and energy expenditure, using bicycle ergometry as a model for recreational bicycling. Three young adult male subjects rode a Monark ergometer at eight pedalling rates (30-120 rev min−1 ) and four power outputs (‘ 0 ’ 81-7. 163-4. and 1961 W) [vdot] o 2 determinations were made, and using measured R, gross energy expenditure was derived. When these values were combined with the results of other researchers using similar protocol but different power outputs, it was found that: (I) a ‘ most efficient’ pedalling rate exists for each power output studied: (2) the ( most efficient ) pedalling rate increases with power output from 42 rev min− 1 at 40-8 W to 62 rev min− 1 at 326-8 W: and (3) the increase in energy expenditure observed when pedalling slower than‘ most efficient’ is more pronounced at high power outputs than at low outputs, while the increase in response to pedalling faster than “lsquo; most efficient’ is less pronounced at high power outputs than at low outputs. Thus, there is appreciable interaction between pedalling rate and power output in achieving the ‘ most efficient ’ rate in bicycle ergometry. The ‘ most efficient’ pedalling rate observed at high power outputs in the present study is considerably lower than that reported for racing cyclists by others. This discrepancy may well be related to the difference in swing weights between the ergomeler' s heavy steel flywheel and crankset, and that of the lightweight wheel and crankset used on racing bicycles.