Neonatal Exposure to Brominated Flame Retardant BDE-47 Reduces Long-Term Potentiation and Postsynaptic Protein Levels in Mouse Hippocampus
- 1 June 2007
- journal article
- research article
- Published by Environmental Health Perspectives in Environmental Health Perspectives
- Vol. 115 (6), 865-870
- https://doi.org/10.1289/ehp.9860
Abstract
BACKGROUND: Increasing environmental levels of brominated flame retardants raise concern about possible adverse effects, particularly through early developmental exposure. OBJECTIVE: The objective of this research was to investigate neturodevelopmental mechanisms underlying previously observed behavioral impairments observed after neonatal exposure to polybrominated diphenyl ethers (PBDEs). METHODS: C57Bl/6 mice received a single oral dose of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on postnatal day (PND) 10 (i.e., during the brain growth spurt). On PND 17-19, effects on synaptic plasticity, levels of postsynaptic proteins involved in long-term potentiation (LTP), and vesicular release mechanisms were studied ex vivo. We investigated possible acute in vitro effects of BDE-47 on vesicular catecholamine release and intracellular Ca2+ in rat pheochromocytorna (PC12) cells. RESULTS: Field-excitatory postsynaptic potential (f-EPSP) recordings in the hippocampal CAI area demonstrated reduced LTP after exposure to 6.8 mg (14 mu mol)/kg body weight (bw) BDE-47, whereas paired-pulse facilitation was not affected. Western blotting of proteins in the postsynaptic, triton-insoluble fraction of hippocampal tissue revealed a reduction of glutamate receptor subunits NR2B and GluR1 and autophosphorylated-active Ca2+/calmodulin-dependent protein kinase 11 (alpha CaMKII), whereas other proteins tested appeared unaffected. Amperometric recordings in chromaffin cells from mice exposed to 68 mg (140 mu mol)/kg bw BDE-47 did not reveal changes in carecholamine release parameters. Modest effects on vesicular release and intracellular Ca2+ in PC12 cells were seen following acute exposure to 20 mu M BDE-47. The combined results suggest a postsynaptic mechanism in vivo. CONCLUSION: Early neonatal exposure to a single high dose of BDE-47 causes a reduction of LTP together with changes in postsynaptic proteins involved in synaptic plasticity in the mouse hippocampus.Keywords
This publication has 44 references indexed in Scilit:
- Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitroArchives of Toxicology, 2006
- The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesiclesNeurochemistry International, 2003
- Effects of Perinatal Exposure to a Polybrominated Diphenyl Ether (PBDE 99) on Mouse Neurobehavioural DevelopmentNeuroToxicology, 2002
- PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunctionToxicology, 2002
- A Brominated Flame Retardant, 2,2`,4,4`,5-Pentabromodiphenyl Ether: Uptake, Retention, and Induction of Neurobehavioral Alterations in Mice during a Critical Phase of Neonatal Brain DevelopmentToxicological Sciences, 2002
- Ca2+‐independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb2+Journal of Neurochemistry, 2002
- Brominated flame retardants: a novel class of developmental neurotoxicants in our environment?Environmental Health Perspectives, 2001
- Conditional Restoration of Hippocampal Synaptic Potentiation in GluR-A-Deficient MiceScience, 2001
- Hippocampal Synaptic Plasticity Involves Competition between Ca2+/Calmodulin-Dependent Protein Kinase II and Postsynaptic Density 95 for Binding to the NR2A Subunit of the NMDA ReceptorJournal of Neuroscience, 2001
- Postsynaptic protein phosphorylation and LTPTrends in Neurosciences, 2000