Diabetes and Vascular Disease

Top Cited Papers
Open Access
Abstract
Diabetes mellitus affects approximately 100 million persons worldwide.1 Five to ten percent have type 1 (formerly known as insulin-dependent) and 90% to 95% have type 2 (non–insulin-dependent) diabetes mellitus. It is likely that the incidence of type 2 diabetes will rise as a consequence of lifestyle patterns contributing to obesity.2 Cardiovascular physicians are encountering many of these patients because vascular diseases are the principal causes of death and disability in people with diabetes. The macrovascular manifestations include atherosclerosis and medial calcification. The microvascular consequences, retinopathy and nephropathy, are major causes of blindness and end-stage renal failure. Physicians must be cognizant of the salient features of diabetic vascular disease in order to treat these patients most effectively. The present review will focus on the relationship of diabetes mellitus and atherosclerotic vascular disease, highlighting pathophysiology and molecular mechanisms (Part I) and clinical manifestations and management strategies (Part II). Abnormalities in endothelial and vascular smooth muscle cell function, as well as a propensity to thrombosis, contribute to atherosclerosis and its complications. Endothelial cells, because of their strategic anatomic position between the circulating blood and the vessel wall, regulate vascular function and structure. In normal endothelial cells, biologically active substances are synthesized and released to maintain vascular homeostasis, ensuring adequate blood flow and nutrient delivery while preventing thrombosis and leukocyte diapedesis.3 Among the important molecules synthesized by the endothelial cell is nitric oxide (NO), which is constitutively produced by endothelial NO synthase (eNOS) through a 5-electron oxidation of the guanidine-nitrogen terminal of l-arginine.4 The bioavailability of NO represents a key marker in vascular health. NO causes vasodilation by activating guanylyl cyclase on subjacent vascular smooth muscle cells.4 In addition, NO protects the blood vessel from endogenous injury—ie, atherosclerosis—by mediating molecular signals that prevent platelet and leukocyte interaction with …