Abstract
The first and second laws of thermodynamics are applied to the stretching of vulcanized gum rubber stocks. Equilibrium stress-strain curves without appreciable hysteresis are described. The modulus of elasticity of vulcanized rubber for higher elongations obtained from the equilibrium stress-strain curve is capable of giving agreement with predictions of the second law of thermodynamics and the Joule heat effect. The modulus of elasticity from the equilibrium stress-strain curve is practically independent of the time of cure for a range of cures for elongations less than 600 per cent. The customary stress-strain curves show the rubber to be stiffer with increased cure. These facts are additional evidence that the important effect caused by vulcanization is a greater resistance to plastic flow or permanent set.